Polarimetric Image Sensor and Fermi Level Shifting Induced Multichannel T...
Four-channel directly modulated square-rectangular laser array in the O-band
High-performance optical noncontact controlling system based on broadband...
Influences of gallium and nitrogen partial pressure on step-bunching and ...
Oxygen-etchant-promoted synthesis of vertically aligned graphene arrays i...
Study of strain evolution mechanism in Ge1_xSnx materials grown by low te...
Spin logic operations based on magnetization switching by asymmetric spin...
Scattering suppression at MOS interface towards high-mobility Si-based fi...
Design and calculation of type-II superlattice resonant cavity-enhanced p...
Stabilization of thick, rhombohedral Hf0.5Zr0.5O2 epilayer on c-plane ZnO
官方微信
友情鏈接

Enhanced in-plane ferroelectricity, antiferroelectricity, and unconventional 2D emergent fermions in quadruple-layer XSbO2 (X = Li, Na)

2021-11-25

 

Author(s): Guan, S (Guan, Shan); Zhang, GBA (Zhang, GuangBiao); Liu, C (Liu, Chang)

Source: NANOSCALE DOI: 10.1039/d1nr06051a Early Access Date: NOV 2021

Abstract: Low-dimensional ferroelectricity and Dirac materials with protected band crossings are fascinating research subjects. Based on first-principles calculations, we predict the coexistence of spontaneous in-plane polarization and novel 2D emergent fermions in dynamically stable quadruple-layer (QL) XSbO2 (X = Li, Na). Depending on the different polarization configurations, QL-XSbO2 can exhibit unconventional inner-QL ferroelectricity and antiferroelectricity. Both ground states harbor robust ferroelectricity with enhanced spontaneous polarization of 0.56 nC m(-1) and 0.39 nC m(-1) for QL-LiSbO2 and QL-NaSbO2, respectively. Interestingly, the QL-LiSbO2 possesses two other metastable ferroelectric (FE) phases. The ground FE phase can be flexibly driven into one of the two metastable FE phases and then into the antiferroelectric (AFE) phase. During this phase transition, several types of 2D fermions emerge, for instance, hourglass hybrid and type-II Weyl loops in the ground FE phase, type-II Weyl fermionsin the metastable FE phase, and type-II Dirac fermions in the AFE phase. These 2D fermions are robust under spin-orbit coupling. Notably, two of these fermions, e.g., an hourglass hybrid or type-II Weyl loop, have not been observed before. Our findings identify QL-XSbO2 as a unique platform for studying 2D ferroelectricity relating to 2D emergent fermions.

Accession Number: WOS:000718550000001

PubMed ID: 34781325

ISSN: 2040-3364

eISSN: 2040-3372

Full Text: https://pubs.rsc.org/en/content/articlelanding/2021/NR/D1NR06051A



關于我們
下載視頻觀看
聯系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

電話

010-82304210/010-82305052(傳真)

E-mail

semi@semi.ac.cn

交通地圖
友情鏈接
中華人民共和國科技技術部
中國科學院
中國工程院
國家自然科學基金委員會
中國科學院大学
中國科學技術大學
中國科學院科技产业网
版权所有 九五至尊娱乐棋牌

備案號:,京ICP備05085259-1號 京公網安備110402500052 中國科學院半导体所声明